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J. Phys. A: Math. Gen. 14 (1981) 1357-1381. Printed in Great Britain 

Renormalisation group study of polyelectrolyte chains 

G Jug and G Rickayzen 
The Physics Laboratory, The University, Canterbury, Kent, UK 

Received 11 November 1980 

Abstract. The behaviour of long unscreened polyelectrolyte chains is studied using 
field-theoretic renormalisation group methods based on the renormalisation procedure of 
t’Hooft and Veltman. It is shown that a fixed point exists near dimension six and details are 
given of the calculation of the critical exponents up to O(e2). It is also shown exactly that, as 
long as a fixed point exists, the radius of gyration RG is given by RG - N ”  with v = 2 / ( d  - 2). 

1. Introduction 

Polyelectrolytes are macromolecules with ionisable groups that in solution partially 
dissociate to give polyions and oppositely charged counterions (Oosawa 197 1, 
Katchalsky 1953). As is well known (Oosawa 1971, de Gennes etal 1976, Pfeuty e ta l  
1977, Pfeuty 1978), charged polymers have a much larger size than uncharged 
excluded-volume ones, this being a consequence of the long range of the (unscreened) 
Coulomb potential. 

Nevertheless, when salt or other electrolyte is added in high enough concentration 
to the solution, the Coulomb interaction is screened and the polymer chain recoils on 
itself. These electrostatic effects on the conformation of charged chains in natural or 
synthetic polyelectrolyte solutions are believed to be responsible for many important 
phenomena. A good understanding of the conformation properties of these systems is 
thus required and, as a starting point, the evaluation of the polyion size in the dilute 
regime will be considered in this paper. 

In the limit of very low concentration it is assumed that each chain behaves 
independently of the others. In this limit, phenomenological calculations of the Flory 
type (de Gennes etal (1976) and references therein) show that the radius of gyration RG 
of an isolated polyion grows with the polymerisation index N proportionally to N itself. 
More generally, for a chain in a d-dimensional space interacting with a generalised 
Coulomb potential given by 

V ( R )  = Q ~ / ~ R ~ - ~  

RG is believed to grow as N3’*. 
More rigorous calculations can be performed, starting from a microscopic model for 

the chain configuration probability distribution (Edwards 1966) and making use of field 
theory and renormalisation group (RG) methods. These techniques allow us to study 
the asymptotic (N  + CO) behaviour of the chain configuration functions, and thus they 
represent a way to calculate its size exponent Y, defined such that 

lim RG-Nu.  
N+m 

0305-4470/81/061357 +25$01.50 @ 1981 The Institute of Physics 1357 



1358 G Jug and (7 Rickayzen 

In this work we present a detailed calculation of the exponent v for an isolated 
polyelectrolyte in a d-dimensional space. The Lagrangian theory of a model system in 
which every monomer is carrying a fixed charge and the counterions are uniformly 
distributed in the solution is discussed. The RG treatment for this system is then shown 
to give an exact result for the exponent v, valid at least near dimension six. 

This same problem has already received attention and has been tackled with similar 
techniques by Pfeuty et a1 (1977). In their letter, these authors successfully calculate the 
exponent v for the isolated polyelectrolyte in d dimensions using a field-theoretic RG 

method, the details of which, however, have never been published. In their paper they 
find the same results for the exponents ’q and v to order E *  as we do, although they 
propose that the result for v should be true to all orders in E and give phenomenological 
arguments to support this proposal. 

The present paper thus completes the work by Pfeuty et al, although it is mainly of 
technical interest, as no new evidence is provided for the value v = 1, not yet rigorously 
proved, of the size exponent of the polyelectrolyte chain in three dimensions. 

The paper is organised as follows. In § 2 the microscopic model is presented and its 
equivalent Lagrangian field theory introduced through the use of the celebrated n = 0 
equivalence theorem (de Gennes 1972, des Cloizeaux 1979 ,  of which a new direct 
proof is given in appendix 1, The Lagrangian field theory, a cP4  model with a two-point 
Coulomb interaction, is a non-trivially renormalisable one. It is thus transformed into a 
new point-interacting field theory through the introduction of a new (Coulomb) scalar 
field. 

The perturbative renormalisation theory for the new model is presented in 5 3 for 
the case of general n. In S 4, the critical exponents 7 and v for the polymer ( n  = 0) 
problem are calculated to order g 2 ,  using t’Hooft and Veltman’s (1972) dimensional 
regularisation and renormalisation by minimal subtraction of singularities. In this 
particular RG approach we recover the results of Pfeuty et a1 and rigorously prove that 
the result for v holds to every order in E .  Moreover, we show clearly that the validity of 
the result depends upon the existence of a non-trivial, stable fixed point in d dimen- 
sions. Near dimension six, such a fixed point is found by standard &-expansion 
treatment. For a general value of n, our method leads to a scaling relation for two 
critical exponents of the Lagrangian field theory, whose physical meaning remains 
unknown. 

Finally, in appendix 3 the renormaIisatiori of the Coulomb field theory is presented 
and the exponents 7 and v recalculated in this frarnework to order E * ,  reaching results 
consistent with the previous calculation. 

2. Definition of the model 

We consider an isolated polyion in a good solvent, assuming that on each monomer 
there is a charge Ze. The Coulomb interaction between pairs of monomers will be 
considered dominant and, in this first attempt to calculate the size of the polyion, we will 
assume that the distribution of counterions in the region occupied by the polyion is 
uniform (de Gennes et a1 1976, Pfeuty et a1 1977, Pfeuty 1978). 

Following the usual procedure (Edwards 1966, des Cloizeaux 1975), we associate 
with each point of the continuous chain a vector r ( s ) ,  where s is the length, measured 
along the chain, between the point defined by r ( s )  and one end of the chain (0 < s s L, 
I, = N1 being the chain length and 1 the link length). The statistical weight relative to a 
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configuration %? = {r(s), 0 s s s L}  of the polyion will be given by 

P(W, L )  = z--’(L) e x p [ - ~ ( % ) ]  

with 

1359 

(2.1.) 

H ( % )  =Ho+Hr=- 
21 

L L +$lo ds’ jo ds” 1 dq u ( 4 )  exp{-iq * [r(s’)-r(s’’)]}, 

Z ( L )  = J’ DV e x p [ - ~ ( % ) ] ,  D%= fl dr(,s). (2.3) 

(2.2) 

the partition function being defined as 
L 

s = o  

The function u ( q )  in (2.2) is the Fourier transform of the bare d-dimensional Coulomb 
potential, V(r) = Z2e2/Erd-’, where the q = 0 term has been cancelled by the inter- 
action term in HI due to the uniform counterion background. That is: 

The integral J dq -J ddq/(27r)d is a multiple integral over a d-dimensional momentum 
space in which a natural cut-off 141 s A = I-’ is introduced. Finally, /3 = (kBT)-l. The 
quantity of interest here is the probability distribution for the chain ends, defined as (des 
Cloizeaux 1975) 

J D % ? ~ [ ~ ( O ) - X ~ ] S [ ~ ( L )  -x21 e-H(‘) 
G(x1, . ~ 2 ;  L )  = J D V  e-Ho(’g) 

and satisfying the property of invariance under space translations: 

G(xi7X2;L)=G(xl-X2, O ; L ) = G ( O , X ~ - - X I ; L ) .  

The mean-square end-to-end distance is, for instance, given in terms of G: 

and we will be concerned with the calculation of the size exponent for the poly- 
electrolyte chain, defined by the asymptotic behaviour 

To do so, we will use the equivalence, first established by de Gennes (1972), between 
the polymer problem and a zero-component magnetic system near its critical point. In 
the limit L -+ CO the polymer is a critical object and its size exponent is formally equal to 
the critical exponent v for the n = 0 magnetic system. 

More precisely, the Laplace transform of the probability (2 .5) ,  

is formally equivalent to the connected two-point Green function G ~ 2 ’ ( ~ ~ r ~ 2 )  in a 
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zero-component field theory with Lagrangian 

where 4 (x) is a real n + 0 component field, V(x) is the interaction potential and 
ro = 

This equivalence was first proved by using perturbation expansion [des Cloizeaux 
1975, de Gennes 1972) and very recently by direct analytic methods (Orland 1980, 
Duplantier 1980); a new direct method is however reported in appendix 1. See also 
Daoud et a1 (1975) for evidence of the magnetic analogy of the polymer problem on 
more physical grounds. Hence, we will study, in what follows, the critical behaviour of a 
system described, in a momentum space where the cut-off A is introduced, by the 
Lagrangian 

3[41=; f I ' d k  (ro+k2)4,(k)4,(-k)  
r=l 

(2.10) 

in the limit n + 0. 
To do so, we will use the field-theoretic RG method in the approach of the 

dimensional regularisation and renormalisation by minimal subtraction of singularities 
developed by t'Hooft and Veltman in relativistic quantum field theory (t'Hooft and 
Veltman 1972) and successfully introduced by Amit in statistical physics (Amit 1976) 
(see however Amit (1978) for a general, detailed and elegant introduction to RG 

methods). This particular approach represents a natural way of applying field theory to 
critical phenomena, and is technically advantageous as it provides many internal checks 
as the calculation proceeds. 

I t  is, however, not convenient to tackle, with RG methods, the critical behaviour of 
model (2.10) directly, since (as we will show in appendix 3) the Coulomb-interaction 
theory is renormalisable in an unusual way, as the interaction is not a point one. We find 
it more convenient to transform the theory (2.10) into another one with point 
interaction, to which almost standard techniques can be applied, by introducing a new 
field. This new scalar field $(x) is defined such that, apart from normalisation factors, 

where go and w ( k )  are defined by 

w ( - k )  = w ( k )  and (g0/3!y = - 4 w ( k ) v ( k ) .  

(2.12) 

(2.13) 
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As the Coulomb interaction is 

{ : 0 / 4 ! ) k - ~ >  k f O  A o  Z 2 e 2  
-= 18 TP-  v ( k )  = k =0’ 4! 

we can choose 
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(2.14) 

(2.15) 

giving 

+-go c {” dki dk2 dk34i(k1)4i(k2)$(k3)s(kl+ k ~ +  k3) (2.16) 
3! i = l  

representing a point d2$-theory, as it can be written in the form 

L [ 4 ,  $1 = { ~ ~ I ~ ~ O [ ~ ( X ) I ~ + ~ [ V ~ ( ~ ) ~ ~ + ~ [ V S ~ ~ ( ~ ) I ~ +  (1 /3! )g0[4(x) l2$(x)} .  (2.17) 

We remark that the choice (2.15) for go can generate imaginary fixed points g” under 
the RG transformation, as we will in fact see in Q 4. This is however an artifact of the 
transformation, as relevant quantities are given in terms of a series of powers of A and 
hence of even powers of g, leading to real values. 

3. Perturbation expansion and renormalisation of the theory 

3.1. Feynman diagrams for the relevant irreducible vertices 

The Lagrangian (2.16) and (2.17) can be regarded as an ( n  + 1)-vector 43-field theory 
Lagrangian by introducing the ( n  + 1)-component field 

d = (41,. . . , 4 n ,  $1 
with masses 

yo1  = ro, rO2 = ro, . . . , 
and rewriting the Lagrangian in the form 

T O n  = ro, r O n + l  = 0, 

where 

Qijk = :[sij(1 - 8i ,n+1)~k,n+l  + 2 permutations] 

is a tensor symmetric in all three indices. 
Green functions can be defined by 

and their perturbation expansions written down as power series in the coupling constant 
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go, each particular contribution being represented by a Feynman diagram, drawn and 
calculated according to the usual rules (Amit 1978). 

The bare propagators are 

and it turns out in the end that only two of them are distinct, representing the bare 
propagators for the fields I$ and 4:  

1 
G $ ’ ( k )  =- ro + k2’ 

(=Q if k = 8) .  (3.2) 

Here, they will be represented diagrammatically by a single full line and by a single 
broken line, respectively. 

Drawing and evaluating diagrams is easier if the interaction vertex is represented by 
a point at the meeting of two single full lines, carrying momentum labels k l  and k2  and 
the same spin label i, and a single broken line carrying momentum label k3.  In drawing 
graphs we must then remember that only lines of the same species can be contracted 
into pairs, and in evaluating them we include a factor -(1/3!) goS(kl + k2 + I s 3 )  for every 
interaction vertex. Combinatorial and symmetry factors will be calculated in the usual 
way, taking into account the above remarks. 

As we are interested in the n = 0 limit of the field theory, loop diagrams will be 
excluded from the perturbation expansions in the main calculations. 

In this limit, non-vanishing Green functions of interest are 

G!iG(k, - k )  = ( 6 ( k M L ( - k ) ) ,  
1 

G W ,  -k) = ( + ( k ) + ( - k ) )  -+ 2, 
n-0 

The one-particle-irreducible (IPI) parts of any Green function can still be obtained from 
a generating functional r[& 6, t ] .  This is defined through a Legendre transform of the 
generating functional F[h,  j ,  11 for the connected parts of G(N,L), which is in turn 
constructed from the Lagrangian (2.17), adding a source term of the form 

The transform r is defined by 

with 

(3.6) 

By successive differentiations of equation (3 .9 ,  we can still prove that the relationship 
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between connected Green functions C"9L' and their IPI parts is given by 

c i l , ~ , i N ( k i . .  . k N ; P i . .  . P L . ) = -  1 c$Tj, (kl) .  . . c $ ~ ~ ~ N ( k N ) r ~ ~ ~ ~ ( k i . .  . k N , p 1 . .  .PL.) ,  
ii ... jN 

CiT;,"' (k l ,  k2; p i )  = 1 CiTj, (k1)Ci:j2 ( k ~ ) r ~ ~ j ~ ) ( k ~ ,  kZ; pi ) ,  (3.7) 
i i i z  

I ( N L )  
i 
where the indices i, and ja refer to components of the 4 = (&,CO) field. 

We can at this point draw the diagrammatic expansions for the IPI parts of the Green 
functions (3.3) in the n = 0 limit; to order two-loops, these are shown in figure l ( a ) .  The 
diagrammatic expansion, to order two-loops, for the vertex r f ; ( k )  is drawn in figure 
l ( b )  for the general n case. 

Figure 1. ( a )  Two-loops order diagrammatic expansions of r:;, r::', ry& in the n = 0 
limit. 

Figure I. ( b )  Two-loops order diagrammatic expansion for r;; (the ~ P I  part of the dressed 
interaction) for general n. 
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As usual, the wiggly line - represents a cP2 insertion and the numbers reported on 
certain graphs represent their multiplicity numbers, when different from one. 

We remark that in all the diagrams drawn for the IPI parts the contributions of the 
external legs must not be taken into account, and we stress the fact that the term IPI here 
refers both to 4- and to $-body cuts, as it should from definition (3.5) of the generating 
functional r. This completely irreducible character of the vertex functions r(N,L) for the 
present theory will be partially lost for the Coulomb interaction theory (see appendix 3 ) .  

3.2. Primitive divergences and critical dimensionality 

We start by illustrating our renormalisation technique. 
As explained by Amit (1976,1978) ,  we can learn about the critical behaviour of our 

theory by looking at the ultraviolet divergences of the momentum integrals in our 
Feynman diagrams when the cut-off A is extended artificially to infinity, this being the 
essence of the dimensional regularisation procedure. The integrals, with no cut-off, are 
calculated for values of the dimensionality d for which they are finite and then 
analytically conticued in all the complex plane spanned by d. Ultraviolet singularities 
then appear as poles of all orders in the variable d ,  - d = e ,  where d ,  is the critical 
dimensionality of the problem. To determine d ,  we look at the primitive IJV divergence 
of a general Feynman graph of a vertex function with E external legs, r interaction 
vertices, I internal lines and L loops (all of unspecified origin). Then we have: primitive 
uv divergence -As, where 

6 = L d  -21, L = I -  ( r  - l), I = 4 ( 3 r - E ) ,  
so that 

(3 .8)  1 S = - r S 3 + ( d + E - ~ E d ) ,  8 3 = 3 - ~ d .  
In field-theoretic language, d ,  is defined such that for d s d ,  the power of the uv 
divergence, 6, does not increase with the order r of the diagram. This entails S3 2 0, and 
if we write S3 = ;(d,-d),  then from (3 .8)  we find 

d ,  = 6 ,  (3 .9)  
which means that our expansion parameter has to be 

s = 6 - d .  (3.10) 

We remark that the critical number of dimensions for the polyelectrolyte, found here by 
field-theoretic arguments, agrees with the value proposed by de Gennes (de Gennes et 
a1 1976)  on more physical grounds. 

3.3. Renormalisation of the theory 

According to the general renormalisation theory, our theory is renormalisable for 
d s 6 ,  when only a finite number of parameters is needed to convert the theory to one 
with all vertex functions finite at every order. 

To find out the primitively divergent vertex functions, we observe that at the critical 
dimensionality d = d ,  the power of the uv divergence of a vertex becomes, from 
(3.81, 

6 , -2L= 6 - 2 E - 2 L ,  (3 .11)  

where L is now the number of d2 insertions. 
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Thus, primitively uv divergent vertex functions will be those for which 6 - 2 E  - 2L 
0. In the limit n = 0, only the functions r“), must be renormalised. To find 
out how the renormalisation has to be done, we first confine our discussion to the critical 
theory, ro=roo in which the renormalised ‘mass’ r is zero. As is well known, this 
situation corresponds to the case of an infinitely long polymer (des Cloizeaux 1975), for 
which the relationship N - (ro - roc)-’ is expected. 

We have then to introduce into the problem an arbitrary momentum scale, K ,  so that 
the bare and renormalised coupling constants can be written in terms of K and two 
dimensionless expansion parameters: 

and 

(3.12) 

Together with the dimensionless renormalisation function W O (  w, E )  we introduce the 
vector of parameters 

E l 2  g=WK . E l 2  gO=WOK , 

Z&(W, E )  = (Z,,, z,,, * * - 9 -%”, Z$), (3.13) 

representing the field renormalisation functions, and a last renormalisation parameter 
representing the +2-renormalisation function Z,Z(W, E ) .  

We then expect the renormalisation prescription to be of the form 

(3.14) 

the index i, referring to one of the 4- components or to 4. However, since all the 
masses of the components of the field 4 are equal to ro in the bare theory, we expect that 
only two components of 26 are distinct, i.e. we must have 

riFk!iNR(ki; p i ;  w, E ,  K )  = z ~ / ’ z ~ ~ ’ .  . . Zf~2Z~2rili2...IN(ki; ( N ,  L), p i ;  go), 

z,i = 2, for i = l , 2 , .  . . , n ;  2, # 2,. 

To check that we are using the correct renormalisation procedure, we put (3.14) in 
terms of counter terms. Since we have 

C:f!2R (ki, k2) = Z~1/2Z~1/2CiTi)2 (ki ,  kz), (3.15) 

as we can see from C j  CiT,’, (k)rjj?,k(k) = S i l i z  using (3.14) for r;f;R(k), the renor- 
malisation prescription for the connected Green functions, as derived from insertion of 
(3.14) and (3.15) into (3.7), will be 

Ci:tAR(ki;Pi; W ,  E ,  K ) = Z t l ”  Z, 1/2 2,+2Cifl::;(ki;pi; L go). (3.16) 

Hence, the renormalised field theory may be derived from a new Lagrangian, which in 
the (n + 1)-component field formalism will be given by 

with L [ d ]  given by (3.1) and 

hl(x) = 2;’”hi(x), t‘(x) = Z & ( X )  

new sources. 
Redefining the field components according to 

(3.17) 

(3.18) 
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the Lagrangian (3.17) can be written as 

where 

(3.21) 

is the renormalised Lagrangian with new masses ri and coupling constant g, and the 
counter terms, CT, are given by 

In terms of the fields 4 and 4, these counter terms are 

If we now consider, when writing down the perturbation expansion for a vertex I‘i:?j!,, 
that there is no way to distinguish one +component from another, but that any 
+component contributes differently from 4, we realise that any iterative procedure to 
construct counter terms (Amit 1978) would lead us to the counter terms given by (3.23) 
for the present field theory. 

4. Renormalisation group and calculation of the exponents near dimension six 

4.1. RG equations and scaling 

The renormalisation prescription for the critical theory, equation (3.14), states that as 
E + 0 the renormalised vertex functions are finite, order by order, in the perturbation 
expansion with w as expansion parameter. This must be true independently of the 
momentum scale K ,  and this condition gives rise to the RG equation for the critical 
vertex: 

where the Wilson functions are defined as 
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where y+(w)=P(w)alnZ+/aw and yq,(w)=P(w)a1nZ,,,/aw. For the non-critical 
functions ( ro  # roc) we use an expansion of r(N) in powers of Sro = ro - roc with critical 

s as coefficients. Since the 'temperature' shift Sro applies to +fields only, sl, being 
a massless field anyway, we can use the usual expansion (Amit 1978) 

r ( N , L ) ,  

where t = 2;; Sro. 
Consequently, the RG equation for non-critical r'N)k will be 

( K ~ + P ( ~ ) - - ~ ~ + Y + ( N . ) - ~ ~ q , ~ q , ( w ) + Y 6 z ( W ) f - ) r ~ ~ ~ ~ h - R ( k i ;  a a a t, w, K ) = O .  (4.5) 
a w  a t  

Thus, for pure &component vertex functions (Nq, = 0), the RG equation is the same as 
for a standard single-field theory. Using Dyson's equation, r y i ( k )  = [Cy; ( k ) ] - ' ,  and 
the well known analysis of the scaling properties of the solution of the RG equation for 
the case Nb = N = 2, we deduce that the function Cfi ( k )  satisfies scaling. Namely, 

C:; ( p k )  = p-'2-')C$i ( k ) ,  

Cf i  ( k ,  t )  = k- '2 -" ) f (k t ) ,  with 6 - t-", (4.6) 

77 = r+(w*), v =2-y62(w*),  

where 77 and v, given by 

(4.7) 

are the critical exponents and the fixed point is still defined by the condition P (  w*) = 0. 
All other scaling relations hold in the same way as in the ordinary theory. 

-1 

4.2. Calculation of the exponents in the n = 0 limit to O(E') 

To calculate the &-expansion of the exponents given in (4.7), we need to know the 
Wilson functions P (  w), y+(w), y+z(w),  and the renormalisation functions wo(w,  E ) ,  

Z+(w, E )  and Z+2(w, E ) .  We find these by using the method of minimal subtraction of 
poles for dimensionally regularised vertices. 

Since, in the n = 0 limit, 
r + q , ( k ) = - -  ( 2 )  + - - - = k 2  

is finite, we have 
z (0) q, (w, E ) =  1. 

Hence, the renormalisation conditions we need are, from (3.14), 
(4.8) 

(4.9) 
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Since bare functions are dimensionally regularised, they contain poles of every order in 
E. These must be cancelled, order by order in the perturbation expansion in powers of 
w, by similar poles in Z,, Z+2 and in W O ( W ,  E), since left-hand side functions in (4.9) must 
be finite when E + 0. This condition allows us to determine the coefficients of Z,, Zb2, 

wo in their expansions in powers of w. As they must be momentum-independent, the 
calculation of these coefficients provides a careful check on the way the perturbation 
expansion and the renormalisation of the vertex functions has been done. Also, since 
the functions p, y, and yc2 must be finite when E + 0 and they are given by combinations 
of wo, 2, and Z,2, we must verify in the calculation of the Wilson functions that 
higher-order poles in E do cancel, thus providing another powerful check (Amit 1976, 
1978) on the way we operate. 

The calculation starts with the expansions for the relevant vertex functions, whose 
diagrammatic representations were given in figure l (a) .  To order two-loops these are 

r(2) b+(k; W O )  = k2(1 -Alw; - A ~ w :  +. . .), 

(4.10) 

where 

the one-loop (11,Iz) and two-loops ( 0 1 ,  , . . , D6) integrals corresponding to the 
diagrams drawn in figure l ( a ) .  

Incidentally, these integrals also appear in Amit’s calculation for the Potts model 
(Amit 1976) and with the same &-expansions, although there they are associated with 
topologically different graphs. From (4.10) we deduce that the parameters w o / w ,  Zf ’  
and Z:? must have odd power coefficients equal to zero, in their expansion in powers of 
W :  

2 4 wo= w(l+a2w +a4w +. . .),  
z(O’ 2 4 

b 2  = l + c z w  +c4w +. .  * ,  (4.12) Z f )  = 1 + b2 w + b4w4 + . . . , 

where the ai’s, bi’s and ti's, like the Ai’s, Bi’s and Ci’s, contain poles of every order in E.  

The requirement that poles must cancel, order by order in w, when (4.10) and (4.12) are 
substituted in (4.9), gives 

where [AIs means the singular part of A, as a function of E. We now expand to the 
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desired order the integrals 11, I2 and D1, . . . , D6 in their poles in the variable E ,  that is 

Il(k) = -(k2/3&)(1 + & E  --;E In k2)+O(e) ,  

12(kl, k2) = (1/&)[1 -it. -Lz(k1, k2)EI+O(&) ,  (4.14) 

where 
1 1 

Ldkl ,  k 2 ) = [ 0  d x b  d y @ ( 1 - x - y ) l n [ x ( l - x ) k : + y ( l - y ) k : + 2 x y k l k 2 ] ,  

and 

D l ( k )  = -(1/3&’)k2(1 + $ E  - E  In k 2 ) + O ( ~ ’ ) ,  

D z ( k ) = ( k 2 / 1 8 ~ 2 ) ( l + $ ~  - E  In k 2 ) + O ( e 0 ) ,  

D3(kl ,  k2) = (1/2e2)(1 - :E -2~Lz(k l ,  k2))+O(t.’), 

D4(kl, k2)=(1/2E)+o(s0) ,  

Ds(k1, k2) = - ( 1 / 6 ~ ~ ) [ 1  -EE -2~Lz(k i ,  k2)]+0(~’) ,  

D6(kl, k2)=  (1/2&’)[1-& -2~LZ(kl ,  k2)]+O(E0).  (4.15) 

If we substitute these integrals into (4.11), we then verify that coefficients (4.13) do not 
contain momentum-dependent terms, as these mutually cancel in the calculation. The 
expansions (4.12), up to the required order, for the renormalisation functions can now 
be written down explicitly; they are 

w O = w  1--w + 67 7 1 ) ~ 4 + . . . ] ,  [ 278 ( 3 ’ ~ ~  2’x3 E 

(4.16) 

Introducing these expansions into the definition (4.2) of the Wilson functions, we find 
that these last ones have the correct &-dependence, as cancellations of higher-order 
poles in their formal expansion coefficients do occur. We have in particular 

p ( 0 )  ( W ) = - ~ W ( E + & W ~ + ( ~ ~ / ~ ~ ) W ~ + .  1 

~ : ~ ( W ) = - W W  2 2  - ( 6 7 / 2 ~ 3 ~ ) ~ ~ + .  . . . 

. .), 
y : ’ ( ~ ) = & w ~ + ( 1 3 / 2 ~ x 3 ~ ) w ~ + .  . . , 

(4.17) 

At  this point we start looking for a non-trivial fixed point (NTFP) near E = 0 ( d  = 6), and 
verify its infrared stability (Amit 1978). Solving 

E + & ~ ~ + ( 6 7 / 3 ~ ) w ~ = O  for E +O, 

we find a NTFP for 

( w * ) ~  = -YE - (32 x 6 7 / 4 3 ) ~ 2  (4.18) 

which is IR stable, as 

w = P “ ” ( w * ) = E  - ( 6 7 / 2 4 ~ 3 ) ~ 2 > 0  for E + 0. (4.19) 
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The &-expansion for the critical exponents will then be, to order E ’ ,  

& E 2  -t- Q ( E ~ ) ,  (4.20) 

and this result agrees with the one reported by Pfeuty et a1 (1977). We remark that, as 
seen in equation (4.18), the fixed point w* is imaginary as E + 0, this being the result of 
the introduction in § 2 of a fictitious field 4. Nevertheless, relevant quantities, the 
exponents U and q, are real and we will see in appendix 3 that for the physically 
meaningful Coulornb theory the fixed point U *  = - : ( W * ) ~  is real. 

- 1  1 
U = 2-;& - t o ( ~ ~ ) ,  77 = -4E -- 

4.3. A n  exact result for the size exponent U 

The RG method we use allows one to calculate with no effort all the coefficients of the 
&-expansion for the size exponent I ) ,  i.e. it provides an exact result for v as a function of 
the number of dimensions. It is no accident, in fact, that the E2-coefficient in the 
expansion for U vanishes, or that to order w 2  the expansion for Zgi is the same as for 
w o / w  (see equation (4.16)). 

Let us consider the q52$ model in the case of general n. Then, as demonstrated in 
appendix 2, we can show that, order by order in the expansion parameter, the following 
relationship exists between the two bare functions and r$;): 

‘To order two-loops, this is particularly evident in equations (4.10) and (4.1 1). The same 
relationship must hold for the renormalised vertex functions, so that, using the 
renormalisation prescription (3.14), we can write 

from which, having 

we find 
1 / 2  z ,  wo/w =Z*., (4.23) 

this relationship being true order by order in the perturbation expansion of both sides. 
In particular, in the IZ = 0 case where Z+ = 1 (see equation (4.8)), equation (4.23) 

shows that ZgA and W O / W  are not independent parameters, as they must have the same 
expansion. The most important consequence of (4.23) is however the fact that it 
provides an exact relation for the exponent v. If n f 0, we can verify that, in th, same 
way that r f A ( k ) ,  as solution of a RC; equation, satisfies scaling with an exponent q+ given 
by y+(w*), r $ J ( k )  scales under a change of momentum scale with a critical exponent 
given by 

771L = Y.L(W*) ,  where y,,,(w) = P ( w ) a  In Z,/aw. (4.24) 

The physical meaning of q9 for ra f 0 is obscure, being related to the critical behaviour 
of the Coulomb field +(x), but for the polyelectrolyte problem q, -- 0 and q4 = 77, giving 
z‘,) = 1, 
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For general n, the result (4.23) gives rise to a relationship involving the functions 
p ( w ) ,  y+(w) and y+z(w). We have in fact 

(4.25) 

Remembering now the definitions of p ( w )  and y+z(w) (equation (4.2)) and of yI(w) 
(equation (4.24)), this leads to the result 

( l / w ) P ( w )  =-$e +y+z(w)+aY+(w), (4.26) 

which states that p, y+z and yI are not independent functions. It is useful at this point to 
observe that in the n = 0 limit equation (4.26) simply becomes 

( l / w ) p ' o ' ( w ) =  -$E +y?i(w), (4.27) 

a condition which is verified to order w2, in the expansions for pcO) and yr4, in our 
&-expansion calculations (see equation (4.17)). The condition for a non-trivial fixed 
point to occur is now 

and leads to the relationship 

y+2( w *) + iy+( w *) = a&, 

v- '- i77+=2-1 2~ -I - 2(d -2). 
that is 

(4.29) 

(4.30) 

In the n # 0 case, this would represent a new scaling relation between critical exponents. 
However, its physical meaning is not at all clear. 

In the n = 0 limit, the formula (4.30) represents instead an exact result for the size 
exponent of the single polyion: 

I/ = 2/(d -2). (4.31) 

This is a convenient point at which to stress the fact that the exact result (4.31) is simply 
a consequence of the particular form of the Lagrangian of the problem, equation (3.1), 
and of the RG equations satisfied by the correlation functions associated with it. The 
limit of validity of the result is represented by the existence of the NTFP, equation (4.28), 
which can be established however only near the critical value of the dimensionality. 

5. Conclusion 

We have presented the details of the renormalisation of the Lagrangian 44-field theory 
interacting with a Coulomb potential. Using the renormalisation approach of t'Hooft 
and Veltman, the RG treatment leads to a new scaling relation between two critical 
exponents of the system. In the n = 0 limit, this gives rise to the exact result Y = 
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2/(d -2) for the size exponent of the isolated polyelectrolyte chain, in a space whose 
dimensionality is very close to d, = 6. As first pointed out by Pfeuty et a1 (1977), this 
result differs from the Flory-type value v = 3/d obtainable through self-consistent 
calculations. 

As in many other RG calculations, we are tempted to extrapolate the result 
v = 2/(d -2) to lower dimensionalities, although we cannot verify the existence of a 
stable fixed point below d, = 6, this being a necessary condition for the result to be true. 

The extrapolation procedure proves to be a successful one for the neutral, excluded- 
volume polymer, for which d, = 4. Extrapolated to d = 3, the &-expansion for the size 
exponent v, rigorously true near dimension four, gives the result v -- 0.592 to O(s2)  (des 
Cloizeaux (1975) and reference therein). This result is in good agreement with the most 
recent and accurate experimental value v = 0.586 f 0.004 (Cotton 1980), which is in 
turn quite different from the Flory result v = 0.60. 

For the polyelectrolyte chain, the extrapolation seems to be unacceptable below 
dimension four, when the value v = 1 is recovered. In three dimensions the radius of 
gyration would grow as N 2 ,  faster than the chain linear length L = lN, as N + 03, and this 
is unphysical. Pfeuty et a1 (1977) have provided a phenomenological decimation 
procedure to show that no finite stable fixed point appears to exist below d = 4. These 
authors also argue that for d < 4 the polyelectrolyte chain reaches a new rigid behaviour 
with v = 1, although no rigorous support for this quite reasonable result has been given 
yet. 
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Appendix 1. Alternative direct proof of the zero-component field equivalence for an 
interacting polymer chain 

Let us consider a polymer chain of length L interacting with a potential V(x - y). The 
probability distribution function defined in 8 2 can be alternatively written as 

L L 

ds' ds"V[r(s') - r(s")] - P 5 dsA[r(s)l], 
0 

where 

(Al . l )  

(A1.2) 

is the partition function for the ideal chain, p = (k,T)-' and A(r )  is an external potential 
introduced for mathematical convenience. The physical probability distribution is 
obtained in the limit A(r) = 0. We can obtain an 'equation of motion' for G(R, L, A) by 
considering its change when the length of the chain is increased to L + SL, with 6L + 0. 
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After some algebra, (Al .1)  becomes 

G(R,L+SL,A)= ’ I Dr d r L + d ( R  - rL+aL + ro) Z(L+SL) 

L 3 (rL+sL-rL)2 - - 6 ~  P Jo ds V[rL-r(s)]-PSLA[r(L)]].(A1.3) 
x e x p [ - z  SL l 2  

If we put R’ = R - (rL+sL - rL), we obtain the following integral equation for G: 

3 ( R ’ - R ) 2  
z(L) / d R ’ e x p ( - g  sL - PSLA(ro + R’)  

Z ( L  + SL) 
G(R,  L + SL, A) = 

x G[R‘, L, A(r) + (SL/lz) V(r0 +R’- r)], 
where 

(A1.4) 

Equation (A1.4) is now simplified by the development of both sides to first order in SL. 
Taking into account that on the right-hand side we must also develop G(R‘ ,  L, A) 
around R’ = R, we obtain 

SG(R, L, A) 
aL 1 ‘ I  S N r )  
a 
- G(R, L, A) =ibVZG(R, L, A)+-? drV(R +ro - r )  

where 

= 5 SL. (A1.7) z (L)  I dR’(R’ - R)’ exp 
Z(L + SL) d 

bSL = 

If we put ro = r’, ro+R = r”, we can write the equation for the Green function in the 
form 

(A1.8) 
SG(r”, r’, L, A) 

= 0, 

subject to the boundary condition 

lim G(R,  L, A) = S(R).  
L-0 

(A1.9) 

This equation is now in a standard form (cf Kadanoff and Baym 1962, equation (5.12)). 
We show explicitly that it is the equation satisfied by the Green function of a 

zero-component # J ~ -  field theory with interaction V(x - y), 
First, we introduce the Laplace transform defined by equation (2.8). As a result of 

equations (A1.8) and (A1.9) it satisfies 

SG(r”,  r’, s, A) G(r”,  r’, s, A)-T drV(r”- r )  = ( l / l )S(r”-r’) .  
1 ‘ I  SMr)  

(A1.lO) 
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From this equation it is possible to expand G in powers of the interaction V to obtain 
the usual expansion, but we choose to compare the equation directly with that derived 
from a 44-field theory. 

The Lagrangian for the 44-field theory with an external potential A(r)  is 

dr’ d r ” u ( r ’ - r ’ ‘ ) ~ ~ ( r ’ ) ~ ’ ~ ~ ( r ’ ’ ) ~ ’ ,  ( A l . l l )  

where 

The corresponding Green function is 

Gij(r, r’, A) = 2-’ D 4  exp (-2?)r$i(r)4j(r’), J 
where 

Z =  D+exp(--%) J 

(.A 1.1 2) 

(A1.13) 

(A1.14) 

and the integration is over all values of 4 (r) at each field point r. To obtain the equation 
for the Green function, consider the quantity Qii defined by 

Direct evaluation yields 

Qij(r, r’) = -2-l J ~4 di(rf)( -V2~i(r)+[r0+A(r)!4i(r)  

+- 3!  ‘ 5  dr”u(r -r’f)4i(r)14(r’r)12) exp(-z) 

= -[r~fA(r)--V’]G~~(r,  r‘, A) 

(Al .  15)  

(A l .  16) 

+ iGij(r, r’, A) 1 GI! (r”, r”, A) (Al .  17) 

where the last term comes from the differentiation of 2. From equations (A1.16) and 
(A1.17) we see that 

Qij(r, r’)= -[r0+A(r)-V2]Gii(r, r’, A) 

1 

+- dr”u(r-r”)  Gij(r, r’, A) - Gij(r, r’, A) 1 Gll(r”, r”, A) 
3! ‘ J  I 

(Al .  18) 
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However, Qii can also be evaluated by integrating equation (A1.15) by parts over the 
variable &(r). This leads to 

Qii(r, r ' )= -SijS(r-rf). (A1.19) 

If we note, too, that 

Gij(r, r', A) = SijG(r, r', A), 

we obtain the equation for the Green function, 

(A1.20) 

SG(r, r', A) 
[-V2+ro+A(r)]G(r, r' ,  A)-- dr"u(r-r") 2 -nG(r", r", A)G(r, r', A)) 

3! 'I ( SA(r") 

= S(r - r ' ) .  (A1.21) 

With n = O  and a scaling and proper identification of the variables, this equation is 
identical to (A1.lO) and shows that the polymer problem is equivalent to a zero- 
component c$'-field theory. 

Appendix 2. Proof of the relationship I?$;# = ;gJ&? 

The relationship (4.21) between rFA@ and rgi) is at the origin of the exact result found 
for the exponent I/. 

It can be proved to be true for all values of momenta k l  and k2  by making use of 
diagrammatic perturbation theory. This turns out to be a lengthy and rather involved 
proof, since for every diagram of I':A4 and of r::) having the same topological form we 
have to prove that all factors, in particular symmetry and combinatorial ones, match 
properly. 

A more direct proof can be given by exploiting the form of the Lagrangian (2.17), 
although the method holds for kl + k2 = 0 only. Our task is to prove the following two 
relationships for general n : 

l a  
3 aro r(3) + d k ,  - k, 0 ;  ro, go) = - RO -- rzA ( k ,  - k ;  ro, go), (A2.1) 

(A2.2) 

since from these, equation (4.21) immediately follows. 
Equation (A2.2) is actually true for any massive field theory with a term of the form 

J 

in the Lagrangian. 
With notations from § 3.1, we have in fact 

(A2.3) 

where, for the sake of simplicity, @ is considered scalar (although everything holds for 
general n )  and the symbol l o  means that functional derivatives are evaluated for the 
equilibrium values of 6, and t. Differentiating now both sides of equation (3.5) with 
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respect to ro, 
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but keeping 6 and 4 fixed, we can easily establish 

(A2.4) 

The functional F is now defined as F = In 2, where 

1 
Z O  

~ [ h ,  j ,  t ]  = - j DJ exp (-1, - s),  Zo = D$ exp ( -L) ,  (A2.5) 

L being the Lagrangian of the field, S the source term (3.4) and 6 indicating the totality 
of fields. From (A2.4) and (A2.5) we have 

(A2.6) 

where t (0)  = t ( k  = 0) ,  42(0) = 4 ' (k  = 0) and where d 2 ( k )  is the Fourier transform of 
[4(x)I2. Introducing (A2.6) into (A2.3), we have 

which proves (A2.2). 

by (3.4). We then write, as in (A2.31, 
To prove (A2.1) we take a Lagrangian L of the form (2.17) with source term S given 

Proceeding as before, we find that 

(A2.8) 

Because of the form of Lagrangian (2.17), we can write down the following equation: 

which inserted into (A2.8) for k = 0, gives 

$goar/aro = j ( O )  = sr/sJ(o) (A2.10) 
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and, from (A2.7), we finally obtain 

Appendix 3. Renormalisation and calculation of the exponents for the Coulomb 
theory 

We briefly present here the renormalisation of the Coulomb field theory and the 
deduction of its critical exponents in the n = 0 limit. Beside the fact that the theory is 
non-trivially renormalisable, the calculation of the critical exponents provides further 
checks on the RG procedure we use, confirms the existence of a real NTFP near 
dimension six and gives results in agreement with the calculation of § 4. 

Green functions are now defined for the components of one single field 4 and 
perturbation expansions for them are represented in terms of Feynman graphs in the 
usual way. For the Coulomb theory the interaction vertex is drawn as a dotted line, 
representing the factor v ( k ) ,  with two pairs of full lines carrying momentum and spin 
labels. 

Since CC, is a fictitious field, it turns out that Green functions involving d- 
components only must have the same perturbation expansion in both formalisms, when 
the relationship gi = -3ho is taken into account. For the same reason, diagrams must 
be topologically identical in both theories, although in the present case dotted lines 
represent interactions rather than free-field propagators. 

In principle, expansions for the IPI parts of the Green functions involved change 
when the Coulomb theory is considered, as these vertex functions are now defined with 
respect to +body cuts only. This is because IPI parts are generated from a Legendre 
transform of F which is referred to $-components only (see equation (3.5)). 
Consequently, as for any non-point-interacting theory, we have IPI parts which are not 
reducible with respect to their interaction lines. This feature generates a non-trivially 
renormalisable theory. 

A3.1. Renormalisation of the theory 

The same kind of primitive uv divergences analysis as in § 3.2 allows us to conclude thst 

(A3.1) S (uv) = -r (6  - d )  + ( d  + E -:Ed), 

from which we deduce that we still have d ,  = 6, hence E = 6 - d, and that the relevant 
primitively divergent vertices for E 3 0 are and fl"" (by fL'N,L) we now denote the 
IPI parts of a Green function G'N3L), with respect to +body cuts only). However, it is 
not difficult to see that also the reducible part h(4) of the four-point vertex diverges 
as A + CO, thus providing the third renormalisation condition. 

As can be seen from figure 2, where the n = 0 diagrammatic expansion for fLn(4) is 
given to order two-loops, the uv divergence of is due to the interaction line that 
makes its diagrams one-particle-reducible by not carrying any internal momentum. 
This feature is not found in (A3.1) where it is supposed that every interaction line 
carries an internal momentum. 
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+ . , .  - t----1 ---- 

---- 

-----. 
+ 5 p e r m  - ------ + S p e r m  - 

_----- 

Tigure 2. Diagrams contributing to CL(4) to order two-loops for n = 0. Those contributing to 
fL(4) are drawn in the first two lines. 

To find out the correct renormalisation procedure for the present theory, we will use 
what we have learnt about the related 4'11, theory. We first observe that we must have, 
for general n, 

Cl(')(k) = I 'Ti (k) ,  i2(2v1)(k1,  k2)  = rZ t ' (k1 ,  kz ) ,  (A3.2) 

since one-particle-reducible (with respect to +-body cuts) diagrams in ,fin(') and Cl(2*1) do 
not contribute. Furthermore, if 

k 
r(3) ++*(ki,  k d  - - - -  ('43.3) 

then we have, for general n, 

(A3.4) 

which we can write in analytic form as 

We know from d 3.3 how to renomalise the vertices I'gi, r::' and I?$?;+ for general n. 
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Observing that 

C f i R  (k) = Z,'Cfi(k), (A3.6) 

we are now ready to write down the renormalisation prescription for the relevant 
vertices fl"), fl(2*1) and 

There are three renormalisation parameters, uo(u, e),  & ( U ,  E )  and Z42(u, E ) ,  where 
uo and U are dimensionless coupling constants defined by 

uo = A o K - ~ ,  U = A K - ~ .  (A3.7) 

These parameters must be the same as those defined in 8 3, once the transformation 
w o  = -3u0, w = -3u has been performed. A s  expected, the parameter 2, does not 
intervene and we find 

2 2 

f lg ' (k;  U ,  E ,  K )  = Z,+fl(*)(k; ho), 

R:'l'(kl, k2; U ,  E ,  K )  = Z&iR(2'1)(kl,  k z ;  Ao),  

h(4' I l , . , i 4 ~ ( k i  . . . k4; U, E ,  K )  z+zhi;!..,,(ki . . . k4; Ao), (A3.8) 

which looks rather like the ordinary renormalisation pro5edure for the point-interac- 
ting d4-theory, except that now only the reducible part has to be renormalised. 
This can be seen for hT> 4. 

A3.2. RG and calculation of the exponents to O(E' )  

From the given renormalisation prescription we deduce that a RG equation can be 
written down both for the critical ( r o =  roc or r = 0) and non-critical vertices. In 
particular we deduce that fl") satisfies scaling properties and critical exponents can be 
defined in the usual way. The limit n = 0 is here considered in the calculation of the 
exponents 77 and v to O(e2) .  We need to know the first terms in the expansions for the 
Wilson functions, here defined as 

p'O'(u) = K ( a u / a K ) , , =  -&(a In uo/au)-', 

y $ ' ( u )  = p'O'(u)a In ~ $ ' / a u ,  (A3.9) 

so that we will have for the exponents: 77 = y: ) (u*) ,  Y-' = 2 - ~ $ 4  ( U * )  where U *  = NTFP 
for ~ " ' ( u ) .  

The calculation proceeds within the context of minimal subtraction of poles from 
conditions (A3.8) with bare functions dimensionally regularised. 

To order two-loops we have 

y:J(u) = -p(O'(u)a In ~ : i / a u ,  

R(')(k) = k2(1 + uoAl -  uEA~ +. . .), 

(A3.10) 

corresponding to the diagrams drawn in figure 2 for h(4) and to the diagrams in figure 
l ( a ) ,  opportunely re-evaluated for the present theory, for and fl(zsl). The 
coefficients Ai, Bi and Ci are in this case given by 
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+ 2 perm, 
1 1  
3 (ki-tkz) 

B i z -  

212($, e) + 5  perm, ”‘6 (k l+k2)  

1 1 2 D 3 ( h ,  M) +11 perm+- 1 1 
B3=- 

27 ( k i + k J  K K 27 (kl + k2)’ 

x D4( $, F) + 5 perm +- , D 5 ( ? , e ) + 1 l p e r m  
27 (ki + k z )  

+- 1 z D 6 ( $ , v ) + 5 p e r m + -  1 1  
27 (ki+kz)  27 (kl + k J 2  

(k3 k i+kz)+2perm 
Iz ->- 

K K  
(A3.11) 

where the one-loop integrals 1 1 ’ 1 2  and the two-loop integrals D1, . . . , D6 are the same 
as in § 3. 

The three renormalisation parameters are now expanded as power series in U : 

u o = ~ ( 1 + a l u + a 2 ~ 2 + .  . .I, 
zy =l+blu+b2U2+* . . )  
z(0) 2 

,$z = l+c1u+c2u  +. . . , (A3.12) 

where the ai, bi and ci are determined by the requirement of minimal subtraction of 
poles. We have, with usual notations, 

bi  = [-Ail,, b ~ = [ A ~ - A l ( a l + b l ) I ~ ,  

c1= [-b1+ Clls, ~ 2 = [ ( a l + b l + c l ) C 1 - C ~ - b 2 - b 1 c ~ I ~ ,  

a1 = [-2b1 +B21Blls, a2 = [ 2(a1fb1)B2-B3 -2bz -2b1al - b: ] . (A3.13) 
Bi 

Introducing for the Ai, Bi and Ci their expressions (A3.11) in terms of momentum 
integrals, and for these their &-expansions reported in equations (4.14) and (4.15), we 
can verify that momentum-dependent terms, when all permutations are taken into 
account, do cancel. The renormalisation parameters (A3.12) are then given by 

S 

2 2 1  67 1 (A3.14) 
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We remark at'this point that no relationship can be observed between the expansion for 
u0(u, E )  and Z $  ( U ,  E ) .  Nevertheless, once the transformation uo = -$wi and U = 
--gw is performed, we recover the expansions (4.16) for the functions wo(w, E ) ,  

Z T ' ( w ,  E )  and ZFA (w, E ) ,  and the relationship ZFJ = wo/w is observed. Finally, 
calculating the Wilson functions (A3.9) from expansions (A3.14), we check once again 
that higher-order poles in E cancel and we obtain the expansions 

1 2  

P'O'(u)=-u(E -$U +(67/3X81)u2+. . .), 
y F ' ( u ) = - ~ u + ( 1 3 / 1 2 x 8 l ) u z + .  . . , 
~ f 2 ( ~ ) = $ ~ - ( 6 7 / 6 ~ 8 1 ) ~ ~ + .  . . .  (A3.15) 

These are in turn converted into the corresponding functions (4.17) after trans- 
formation of the coupling constant, making the present calculation consistent with the 
one in § 4. The interesting result is that P'O'(u) has a real NTFP near d = 6 given by, to 
order E ' ,  

(A3.16) 

Again, we can check that U *  = -$w*~,  with w* given by (4.18); moreover, the fixed 
point is infrared stable, being 

(A3.17) 

U* = $6 + (3 x 6 7 / 4 3 ) ~ 2 + .  . . . 

w = P ' O , ' ( U * )  = E - % E 2  + . . . > 0 when E + O .  

Finally, the critical exponents, by substitution of U *  into (A3.15), are 

(A3.18) -1 z2 E + 0 ( E  3),  = 2 - $ & + 0 ( ~ ~ ) ,  1 
77 = -4E -- 

in agreement with (4.20). 
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